miércoles, 26 de octubre de 2011

Resolución de triángulos rectángulos

Dados los siguientes datos resolver el triángulo



Resueltos:
1) A = 20º   c = 80 (Dado un ángulo y la hipotenusa)
Sen 20º=a/80   Cos20=b/80º   B=90º-20º   Area=(27.30*75.14)/2   P=27.30+75.14+80
a=27.30           b=75.10           B=70º         Area=1025.11u2            P=182.40

2) A = 25º   a=30 (Dado un ángulo y el cateto opuesto)
sen25º=30/c   tng25º=30/b     B=90º-25º   Area=(64.35*30)/2   P=30+70.98+64.35
c=70.98         b=64.35           B=65º          Area=964.9u2          P=265.3

3) A = 10º   b=30 (Dado un ángulo y el cateto adyacente)
tng10º=a/30   Cos10º=30/c   B=90º-10º   Area=(5.28*30)/2   P=30+5.28+30.46
a=5.28            b=30.46         B=80º         Area=79.2u2            P=65.75

4) a=2    c=2.82 (Dado 1 cateto y la hipotenusa)
sinA=2/2.82   B=90º-45.17º   b2=(2.82)2-4   Area=(2*1.48)/2   P=2.2.82.1.48
A=45.17º       B=44.8º           b=1.48             Area=1.98u2         P=6.8

5) a=36.4   b=100  (Dado 2 catetos)
sinA=36.4/100   B=90-20   c2=(36.4)2+10000   Area=(36.4*100)/2   P=36.4+100+106.41
A=20                 B=70        c=182.00                  Area=182u"               P=242.81

Funciones de ángulos de 0°,30°,45°,60°,90°


30°
45°
60°
90°
Seno
0
1/2
√2/2
√3/2
1
Coseno
1
√3/2
√2/2
1/2
0
Tangente
0
√3/2
1
√3
Cotangente
√3/3
1
√3/3
0
Secante
1
(2*√3)/3
√2
2
Cosecante
2
√2
(2*√3)/3
1



Los valores de la funciones con valor de 0° resulta de la circunferencia trigonométrica que tiene el cateto opuesto igual a 0 y el valor de la hipotenusa y del cateto adyacente igual a 1



























Para sacar los valores de las funciones con valor de 30° tenemos que tomar en cuenta que el triángulo que se forma es un triángulo equilátero por lo que todos sus lados miden 1 y sus ángulos son de 60°, debemos utilizar estos datos para sacar que el cateto opuesto que mide un medio y el cateto adyacente mide raíz de tres todo sobre dos de la siguiente manera















Para sacar los valores de las funciones con valor de 45° tenemos que tomar en cuenta que el triángulo que la hipotenusa vale 1 y que el cateto adyacente y el cateto opuesto son iguales por lo que podemos proceder a sacar los valores de estos mediante Pitágoras



















Para sacar los valores de las funciones con valor de 60° tenemos que tomar en cuenta las funciones recíprocas de donde



















Para sacar los valores de las funciones con valor de 90° tenemos que tomar en cuenta las funciones recíprocas de donde